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between Adherends with 
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(Received December 24, 1987; in final form April 2, 1988) 

Closed form solutions are derived to predict the peel stresses developed between 
adherends which form a parallel bond but would have slightly different curvatures in 
their unbonded, stress-free states. The solutions are based on beam on elastic 
foundation analysis and may be applicable to a variety of geometries. Failure analysis 
based on a maximum stress criterion as well as a fracture mechanics approach are 
also provided. The possibility of using the analysis as the basis for a fracture test is 
also discussed. 

KEY WORDS Winkler foundation; beam on elastic foundation; adhesive 
stresses; curved adherends; failure analysis; residual stresses. 

INTRODUCTION 

Most adhesive joints are designed to resist some externally applied 
mechanical loading, although occasionally thermal expansion or 
other factors can induce significant residual stresses in an otherwise 
unloaded joint. This paper addresses the residual peel stresses 
within an adhesive layer which result from forcing together and 
bonding adherends with slightly different initial curvatures. Typical 
geometries might include bonding flat strips or plates to curved 
surfaces, curved strips to flat surfaces or, in general, bonding 
together any two cylindrically curved plates with parallel axes but 
different curvatures. This analysis originally arose out of an attempt 
to understand why the author’s warped nameplate partially de- 

59 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



60 D. A. DILLARD 

bonded from his door over time, but has direct applicability to a 
variety of serious adhesive problems including the debonding of 
molding strips from automobiles. The difference in stress-free 
curvature may arise from an initial mismatch prior to bonding, or it 
may result from temperature or moisture gradients, from thermally 
induced curvature in nonhomogeneous adherends, or from a 
difference in solvent content across one of the adherends as could 
arise from drying or solvent outgassing over extended periods of 
time. 

The analysis may also have bearing on stresses which occur in 
paints or coatings, as well as stresses which occur between the thin 
layers in microelectronic chips. The applicability to these situations 
is not complete, however, because the analysis assumes a distinct 
adhesive layer exists with a lower modulus than the adherends. 
Furthermore, in the case of coatings, the high peel stresses 
primarily arise from differences in thermal expansion between the 
film and the substrate. This in-plane stretching effect has not been 
considered in this paper which is limited to the peel stresses arising 
from a curvature mismatch. Techniques to evaluate strain energy 
release rates for this stretching mode have been presented 
elsewhere.’ For linear systems, the solutions may be easily superim- 
posed, although for very thin adherends such as films, the mem- 
brane stiffness is so much greater than the bending stiffness that the 
curvature effect may be negligible. 

FORMULATION OF ANALYSIS TECHNIQUE 

Several potential geometries may be addressed with the solution. 
Figure 1 illustrates several cases of interest with either positive or 
negative curvatures of a rigid substrate and a flexible adherend. 
Figure 2 shows a case with two flexible adherends which is also 
easily analyzed by the technique discussed herein. For convenience, 
we develop our model around the geometry shown in Figure 3 
where an initially curved strip is forced into contact with a flat, rigid 
substrate. The bending stiffness of the flexible member is constant 
and is given by EZ, where E is the modulus and I is the moment of 
inertia of the cross-section. The modulus of the adhesive is E,, the 
nominal thickness of the adhesive layer is h and the width of the 
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STRESSES BETWEEN ADHERENDS 61 

FIGURE 1 Typical configurations of a flexible adherend and a rigid substrate. 

adhesive strip is w. The bonded length of the beam is 2L, but L 
decreases as debonding occurs. Curvatures are considered positive 
if the surface is concave up. The shear and bending moment 
conventions are also shown in Figure 3. Although the derivation is 
based on a beam geometry (plane stress), the solution may easily be 
extended to a plate configuration (plane strain) by replacing EZ/w 
with 0, the plate bending stiffness, and E, with E , ( l -  v:), where 
va is the Poisson's ratio of the adhesive. For plates on elastorneric 

t 

i 3  E2 '2 

FIGURE 2 General configuration with both adherends flexible and initially curved. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



62 D. A. DILLARD 
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FIGURE 3 Sign conventions and dimensions for the analysis. 

adhesives, alternate governing equations discussed in Ref. 2 should 
be used. 

The solution technique is based on a beam on elastic foundation 
analysis attributed to Winkler and discussed in detail by Het~5nyi.~ 
To satisfy the necessary assumptions, we will require that the 
curvatures of the adherends be small in comparison to the thickness 
of the flexible adherend so standard beam theory will apply, that 
the modulus of the adherends be large compared to that of the 
adhesive so strains perpendicular to the bond plane be negligible in 
the adherends, and that the length of the adherend is at least an 
order of magnitude greater than the thickness of the adherend in 
order to be able to neglect shear deformations in the adherends. 
The requirement that the curvature be small does not preclude the 
use of this technique from geometries with large subtended angles, 
but simply requires that t l p  be small, where p is the radius of 
curvature, and t is the nominal thickness of the beam. 

For convenience, the derivation is given for the case of one 
flexible adherend bonded to a rigid substrate, although extension to 
the case of two flexible beams as shown in Figure 2 may be easily 
addressed as follows. If the two beams have stiffnesses of EIZl and 
E&, respectively, the effective beam stiffness becomes the inverse 
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STRESSES BETWEEN ADHERENDS 63 

of the sum of the individual compliances: 

If both adherends are curved, we may use the net curvature: 

1 1 1  
P P1 P2 

- -__-  - 

The curvatures are always measured at the bond surface of the 
adherend. Since the flexible adherend thickness is small compared 
with the curvature, we can use this value of bond surface curvature 
rather than the curvature of the neutral axis without appreciable 
error in the beam equations. 

Considering a differential element from the beam, we recognize 
that expressions for the shearing force, V ,  and bending moment, M ,  
are given by: 

( 3 4  -- - -a(x)w dV(x)  
dx 

where a(x) is the peel stress in the adhesive. If we assume that the 
adhesive is linear elastic, we may write that: 

where y is the deflection of the beam. 
Assuming that the slopes are small (which is a good assumption 

over any localized region), we can use simple beam theory to write: 

d2(Y -Yo)  = 3 
dx2 EI 

where yo is the stress-free shape of the adherend given by: 

(6) 
X 2  

Y O ( X )  = - 
2P 

(We assume that the initial curvature is constant and over any small 
section is adequately modeled by this parabolic form.) 
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64 I). A. DILLARD 

Differentiating twice and substituting in Eqs. (3a) and (3b), we 
obtain 

where 

and recognize that this is simply the equation for a beam on an 
elastic foundation with a solution given by: 

y(x) = e -k (A  cos hr + B sin hr) + ek(C cos Ax + D sin hr) ( 9 )  

subject to the boundary conditions at the ends: 

M(-L) = M(L) = V(-L) = V(L) = 0 

Details for this derivation can be found in any good advanced 
mechanics of materials text, such as Ref. 4. 

We now proceed to solve this equation for our particular 
boundary conditions and loading function. By symmetry, we 
recognize that A = C and B = -D. We make use of one bending 
moment and one shear force boundary condition and obtain that: 

(10) 

(11) 

-cosh AL sin AL + sinh AL cos AL 
2pA2(sinh 2AL + sin 2AL) 

A = C =  

and 
cosh AL sin AL + sinh AL cos AL 

2pA2(sinh 2AL + sin 2AL) 
B = - D = -  

Figure 4 illustrates the beam deflections as a function of position 
for several beam lengths. As might be expected, we note that for 
beam lengths greater than 4/A, the deflection is relatively un- 
changed in the vicinity of the beam end and is nearly zero at all 
intermediate points within the beam. By evaluating the deflection at 
the end of the beam, we obtain 

(12) 
1 sinh 2AL - sin 2AL 

Y(L) =-.-( 2A p sinh 2AL + sin 2AL 

which for large AL becomes 

for AL > 4, (13) 
1 

Y W 2 p 1 2 2  
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FIGURE 4 Deflected shape of various beam lengths. 

and for very small AL is 

y ( L )  = L2/3p for AL < 0.5 
At intermediate values, we observe from Figure 4 that the tip 
deflection reaches a maximum value of -l.057/(2pA2) near AL = 
1.95. For values of AL < -1.5, the tip deflection drops below that 
for long bonds. 

By making use of Eq. 4, Figure 5 shows the details of the peel 

NORMAL STRESS DISTRIBUTION NEAR END OF LONG BOND 

A L-4 1 L-2 A L  
POSITION - 1 x 

FIGURE 5 Normal stress distribution near the end of a long beam. 
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66 D. A. DILLARD 

stress distribution at the end of a sufficiently long joint. The net 
force acting perpendicular to the beam is zero, and the moment 
generated by the stress distribution is just that required to offset the 
curvature. 

FAILURE ANALYSIS WITH POSITIVE CURVATURE MISMATCH 

To develop an appreciation for debonding of the joint, we now 
proceed using the peel stress as given by Eq. 4. For the preceding 
analysis to remain valid, we will assume that the adhesive is linear 
elastic up to failure. If we use a simple maximum stress failure 
criterion, we gain insights into the failure process although, 
admittedly, we have neglected any singularities associated with the 
flaw tip or the material property misrnatchqs Starting the analysis for 
long beams by setting the failure strength, uf equal to u(L): 

Ea Ea 
Uf = a(L) = y ( L )  - = - 

h 2pA2h’ 

we require that the curvature must not exceed 

in order to avoid failure. For values of curvature greater than this, 
we observe from Figure 4 that debonding would be expected to 
occur until the maximum stress is reduced once AL falls below 
-1.5. Use of Eqs. 12 and 4 would permit calculation of the final size 
of the bonded region. This prediction corresponds well with 
experimental observations that debonding occurs only a certain 
distance from each end, leaving a central region which is bonded 
and stable. 

If a fracture mechanics criterion is used to investigate debonding 
for the case of a long bond length, a very simple expression results. 
As long as AL is greater than 4, we notice that an increment in 
debond does not alter the shape of the deflected beam near the tip, 
but simply shortens the total length. A significant observation is that 
even the stresses in the adhesive remain unchanged; they are simply 
shifted in position. In essence, the only stored strain energy which 
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STRESSES BETWEEN ADHERENDS 67 

drives the debond is the energy which would come from an 
equivalent length increment at the center of the beam. Since the 
adhesive strain energy is zero away from the tip region, we conclude 
that the only available strain energy must come from the bending 
energy in the beam required to produce the nominal curvature, p .  
Considering the applicable energy balance equation 

- 6 U = G 6 A  

and the energy in a beam subjected to a fixed curvature 

M 2  EI 
2EI 2p  

6U = - 6 x  = 7 6x 

we obtain the available strain energy release rate as: 

E l  G=- 
2wp2 

where p is defined as in Eq. 2.  Interestingly, no restrictions are 
placed on the thickness or flexibility of the adhesive layer because 
the stored energy in the adhesive remains unchanged for long bond 
lengths. 

FAILURE ANALYSIS WITH NEGATIVE CURVATURE MISMATCH 

Another important configuration is when the initial curvature is 
negative. The peel stress distribution is simply reversed in sign, and 
we recognize that compressive stresses normal to the bond plane 
will result at the ends of the beam. The maximum positive 
deflection will occur at distances n12A inward from the ends. The 
first location of zero displacement occurs a distance of n/4A inward 
from the ends. The magnitude of the displacement at the n12A 
location is given by 

y L-- =- -1 1 =0.2079(-) -1 (17) 
2pA2 cosh n12 + sinh n / 2  2pA2 

or about one-fifth of the maximum deflection at the tip. 
Again, one may apply an appropriate failure criterion to identify 

the critical value of negative curvature for failure. Assuming that 
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68 D. A. DILLARD 

the critical position is where the tensile stress is highest and using a 
maximum stress criterion, we note that 

1 
P 

- - 5 9.62ofil2h/E, 

For shorter bond lengths, we note from Figure 4 that significantly 
larger values of the maximum deflection occur than predicted by 
Eq. (17). The largest deflection occurs when ilL = rr/2 and is equal 
to -O.4345/(2pA2) representing a 109% increase over Eq. (17). 

It should be noted that for the case of negative curvature the 
analysis, once partial debonding occurs, is complicated by the fact 
that the debonded region is forced back on the substrate, inducing 
an additional moment on the flexible adherend. This has not been 
addressed in this analysis. The use of a fracture criterion also 
becomes more involved because tensile stresses are not carried at 
the debonded region, thereby causing the governing equation to be 
invalid. A numerical solution to this problem could be used to 
address these aspects. 

CONCLUSIONS 

Simple, closed-form expressions have been derived for predicting 
the peel stresses which result between beams or plates with a 
mismatch of curvature. The results clearly show why such con- 
figurations may debond over long distances. Both positive and 
negative curvature mismatches have been considered. 

Failure criteria based on maximum stress and a fracture mechan- 
ics approach for these joints have been discussed. This joint 
geometry produces a very constant strain energy release rate 
fracture mode which could conceivably be used for a fracture test. 
Since the specimen is self-loading, however, the strain energy 
release rate could not be changed conveniently once a given 
specimen geometry has been fabricated. Such a technique could be 
adapted to measure the debonding rate for environmentally- 
exposed specimens. Since the available strain energy does decrease 
as the debonding fronts approach each other, the test could also 
measure a threshold value of fracture toughness. By changing the 
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STRESSES BETWEEN ADHERENDS 69 

radius of curvature of the substrate, varying values of strain energy 
release rate could be achieved with the same specimen. 
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